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1 Introduction

Recently, dynamical system structure has played an important role in real life, so
the stability of it has been extensively studied due to its important role in designs
and applications [1-11]. Most of those widely used dynamical system today are classi-
fied into two groups: continuous and discrete dynamical systems. However, there are
still many dynamical systems existing in nature which display some kind of dynam-
ics between the two groups. These include, for example, frequency-modulated signal
processing systems, optimal control models in economics, flying object motions and
many evolutionary processes, particularly some biological systems such as biological
neural networks and bursting rhythm models in pathology. All these systems are
characterized by the fact that at certain moments of time they experience abrupt
changes of states [12,13]. Moreover, impulsive phenomena can also be found in other
fields of electronics, automatic control systems, and information science. Many sud-
den and sharp changes occur instantaneously, in the form of impulse , which cannot
be well described by using pure continuous or pure discrete models. Therefore, the
study of stability to impulsive systems has attracted considerable attention [14-18].

As is well known, the use of constant fixed delays or time-varying delays in models
of delayed feedback provides a good approximation in simple circuits consisting of a

∗Corresponding Authors: longer207@yahoo.com.cn(S.J.Long); daoyixucn@yahoo.com(D.Y.Xu).

EJQTDE, 2007 No. 10, p. 1



small number of cells, therefore, in papers [15,16], time-varying delay models with
impulsive effects are considered. However, dynamical systems usually have a spatial
extent due to the presence of a multitude of parallel pathways with a variety of axon
sizes and lengths. Thus there will be a distribution of conduction velocities along
these pathways and a distribution of propagation delays. In these circumstances, the
signal propagation is not instantaneous and cannot be modelled with discrete delays.
A more appropriate way is to incorporate continuously distributed delays. To the
best of the authors’ knowledge, there are few authors who have studied the global
exponential stability of the dynamical system with distributed delays and impulsive
effect [19,20]. The goal of this paper is to provide such a study. By establishing an
impulsive differential-integro inequality, we obtain some sufficient conditions ensuring
the global exponential stability of impulsive dynamical system with distributed delays.

In this paper, on the basis of the structure of recurrent neural networks with
distributed delays, we consider a class of general dynamical system(s) with distributed
delays.

{

ẋi(t) = −bixi(t) +
∑n

j=1{aijfj(xj(t)) + cij
∫ t

−∞
k(t− s)gj(xj(s))ds} + Ii, t 6= tk,

xi(tk) =
∑n

j=1{wk
ijxj(t

−
k ) + ek

ij

∫ tk
−∞

k(tk − s)njk(xj(s))ds} + Jik, t = tk,

(1)
where i = 1, · · · , n, t ≥ t0, the fixed times tk satisfy t1 < t2 < · · · , lim

k→∞
tk = ∞, k =

1, 2, · · · .The first part (called the continuous part) of model (1) describes the con-
tinuous evolution processes of the dynamical system, bi > 0, aij, cij, Ii are constants,
fj(xj), gj(xj) are continuous functions, k(s) are delay kernel functions, and satisfy

∫ +∞

0

k(s)ds = 1,

∫ +∞

0

k(s)eδ0sds <∞,

where δ0 is a small positive constant. The second part (called the discrete part) of
model (1) describes that the evolution processes experience abrupt change of states
at the moments of time tk (called impulsive moments), njk(xj(tk)) are also continuous
functions, wk

ij, e
k
ij , Jik are constants which have nothing to do with t. If the second

part of (1) is replaced by xi(tk) = xi(t
−
k ) and the state variable represents a neuron,

then model (1) becomes a continuous recurrent neural networks model.

The paper is organized as follows. In the following section we discuss some no-
tations, definitions and lemmas. In section 3, we consider the global exponential
stability of the equilibrium of (1), two theorems and a corollary are given. In section
4, three examples are given to illustrate the effectiveness of our theoretical results.

2 Preliminaries

To begin with, we introduce some notations and recall some basic definitions.

EJQTDE, 2007 No. 10, p. 2



Let Rn be the space of n-dimensional real column vectors and Rm×n denote the set
ofm×n real matrices. ForA,B ∈ Rm×n or A,B ∈ Rn, A ≥ B(A ≤ B,A > B,A < B)
means that each pair of corresponding elements of A and B satisfies the inequality
≥ (≤, >,<). Especially, A is called a nonnegative matrix if A ≥ 0, and z is called a
positive vector if z > 0.

For ψ : R → R, denote [ψ(t)]∞ = sup
−∞<s≤0

{ψ(t+s)}, ψ(t+) = lim
s→0+

ψ(t+s), ψ(t−) =

lim
s→0−

ψ(t+ s).

For x ∈ Rn, A ∈ Rm×n, we denote |x| = (|x1|, · · · , |xn|)T , |A| = (|aij |)n×n, ‖x‖ =
∑n

i=1 |xi|, ‖A‖ = max
1≤j≤n

∑n
i=1 |aij|.

PC := {φ|φ : R → Rn is a function of bounded variation and is right-hand
continuous on any subinterval (−∞, t]}. Denote ‖φ(t)‖∞ = sup

−∞<s≤0
‖φ(t+ s)‖.

Definition 1 For any given t0 ∈ R, φ ∈ PC, a function x(t) ∈ PC[(−∞,+∞), Rn]
is called a solution of (1) through (t0, φ), if x(t) satisfies the initial conditions in the
form

x(t0 + s) = φ(s), s ∈ (−∞, t0], (2)

and satisfies (1) for t ≥ t0, denoted by x(t, t0, φ). Especially, a point x∗ ∈ Rn is called
an equilibrium of (1), if x(t) = x∗ is a solution of (1).

For any φ ∈ PC, we assume that there exists at least one solution of (1) with the
initial condition (2). Let x∗ be an equilibrium point of (1), x(t) be any solution of
(1) and y(t) = x(t) − x∗. Substituting them into (1), we get
{

ẏi(t) = −biyi(t) +
∑n

j=1{aijFj(yj(t)) + cij
∫ t

−∞
k(t− s)Gj(yj(s))ds}, t 6= tk,

yi(tk) =
∑n

j=1{wk
ijyj(t

−
k ) + ek

ij

∫ tk
−∞

k(tk − s)Njk(yj(s))ds}, t = tk,
(3)

where Fj(yj(t)) = fj(yj(t)+x
∗
j )−fj(x

∗
j ), Gj(yj(t)) = gj(yj(t)+x

∗
j )−gj(x

∗
j ), Njk(yj(tk)) =

njk(yj(tk) + x∗j ) − njk(x
∗
j ).

Definition 2 The zero solution of (3) is said to be globally exponentially stable
if for any solution x(t, t0, φ) with the initial condition φ ∈ PC, there exist constant
α > 0 and K > 1 such that

‖x(t, t0, φ)‖ ≤ K‖φ‖e−α(t−t0), t ≥ t0. (4)

For convenience,we shall rewrite (3) in the vector form:
{

ẏ(t) = −By(t) + AF (y(t)) + C
∫ t

−∞
k(t− s)G(y(s))ds, t 6= tk,

y(tk) = Wky(t
−
k ) + Ek

∫ tk
−∞

k(tk − s)Nk(y(s))ds, t = tk,
(5)

where F (y(t)) = (F1(y1(t)), · · · , Fn(yn(t)))T , G(y(t)) = (G1(y1(t)), · · · , Gn(yn(t)))
T ,

Nk(y(t)) = (Nk1(y1(t)), · · · , Nkn(yn(t)))T , A = (aij)n×n, C = (cij)n×n,Wk = (wk
ij)n×n,

and
Ek = (ek

ij)n×n, y(t) = (y1(t), · · · , yn(t))
T .
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As we all know, the stability of the zero solution of (3) or (5) is equivalent to the
stability of the equilibrium point x∗ of (1). So we mainly discuss the stability of the
zero solution of (3) or (5) in section 3.

Lemma 1 Suppose r > l ≥ 0 and p(t) satisfies scalar impulsive differential-integro
inequality







D+p(t) ≤ −rp(t) + l
∫ +∞

0
k(s)p(t− s)ds, t 6= tk, t ≥ t0,

p(tk) ≤ pkp(t
−
k ) + qk

∫ +∞

0
k(s)p(tk − s)ds, k ∈ N,

p(t0 + s) = φ(s), s ∈ (−∞, 0],

(6)

where p(t) is continuous at t 6= tk, t ≥ t0, p(t
+
k ) = p(tk), and p(t−k ) exists, φ ∈ PC with

n = 1,
∫ +∞

0
k(s)ds = 1,∆(λ0) ,

∫ +∞

0
k(s)eλ0sds < ∞ for a given positive constant

λ0. Then
p(s) ≤ ‖φ(t0)‖∞e−λ(s−t0), −∞ < s ≤ t0, (7)

implies

p(t) ≤
∏

t0<tk≤t

δk‖φ(t0)‖∞e−λ(t−t0), t ≥ t0, (8)

where δk := max{1, |pk|+|qk|
∫ +∞

0
k(s)eλsds} and λ ∈ (0, λ0) is a solution of inequality

λ− r + l

∫ +∞

0

k(s)eλsds ≤ 0. (9)

Proof. Since r > l ≥ 0 and function ∆(λ) is continuous and ∆(0) = 1, there
exists at least a solution λ ∈ (0, λ0) satisfying (9). We shall prove that (7) implies

p(t) ≤ ‖φ(t0)‖∞e−λ(t−t0), t ∈ [t0, t1). (10)

We consider two possible cases as follows:

One case is l = 0.

From (6) and (7), we have

D+p(t) ≤ −rp(t), p(t0) ≤ ‖φ(t0)‖∞, t ∈ [t0, t1).

Then , from (9) and l = 0, we have r ≥ λ, and

p(t) ≤ ‖φ(t0)‖∞e−r(t−t0) ≤ ‖φ(t0)‖∞e−λ(t−t0), t ∈ [t0, t1).

Another case is l > 0.

Next, for any constant z > ‖φ(t0)‖∞ ≥ 0, we claim that

p(t) < ze−λ(t−t0) ≡ m(t), t ∈ [t0, t1). (11)

If (11) is not true, then from (7) and the continuity of p(t), for t ∈ [t0, t1), then
there must exist a t∗ ∈ [t0, t1) such that

p(t∗) = m(t∗), D+p(t∗) ≥ m′(t∗), p(t) < m(t), t < t∗. (12)
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By using (6),(9),(12) and l > 0, we obtain that

D+p(t∗) ≤ −rp(t∗) + l

∫ +∞

0

k(s)p(t∗ − s)ds

< −rm(t∗) + l

∫ +∞

0

k(s)m(t∗ − s)ds

= −rze−λ(t∗−t0) + l

∫ +∞

0

k(s)ze−λ(t∗−t0−s)ds

= (−r + l

∫ +∞

0

k(s)eλsds)ze−λ(t∗−t0)

≤ −λze−λ(t∗−t0)

= m′(t∗), (13)

which contradicts the inequality in (12). Therefore, (11) holds for any z > ‖φ(t0)‖∞.
Letting z → ‖φ(t0)‖∞, we obtain (10).

Using (6), (7) and (10), we can get

p(t1) ≤ p1p(t
−
1 ) + q1

∫ +∞

0

k(s)p(t1 − s)ds

≤ |p1|‖φ(t0)‖∞e−λ(t1−t0) + |q1|
∫ +∞

0

k(s)‖φ(t0)‖∞e−λ(t1−s−t0)ds

= (|p1| + |q1|
∫ +∞

0

k(s)eλsds)‖φ(t0)‖∞e−λ(t1−t0)

≤ δ1‖φ(t0)‖∞e−λ(t1−t0).

Therefore
p(t) ≤ δ1‖φ(t0)‖∞e−λ(t−t0), t ∈ (−∞, t1]. (14)

In a similar way as the proof of (10), we can prove that (14) implies

p(t) ≤ δ1‖φ(t0)‖∞e−λ(t−t0), t ∈ [t1, t2). (15)

By a simple induction, we can obtain for any k ∈ N , there is

p(t) ≤ δ1 · · · δk−1‖φ(t0)‖∞e−λ(t−t0), t ∈ [tk−1, tk).

The proof is completed.

Lemma 2[21] Let A ∈ Rn×n, then

1). ρ(A) ≤ ‖A‖,where ρ(·) denotes the spectral radius;

2). ‖(E − A)−1‖ ≤ (1 − ‖A‖)−1 if ‖A‖ < 1;

3). (E − A)−1 exists and (E − A)−1 ≥ 0 if ρ(A) < 1 and A ≥ 0;
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4). λm(A)xTx ≤ xTAx ≤ λM(A)xTx for any x ∈ Rn if A is a symmetric ma-
trix, where λm(·) and λM(·) denote the minimum eigenvalue of the matrix and the
maximum one, respectively.

Lemma 3 For any constant ε > 0, we have

2xTAy ≤ εxTPP Tx+
1

ε
yT (P−1A)T (P−1A)y, (16)

where A is a real matrix and P is a inversive real matrix.

Proof. We have

0 ≤ |
√
εP Tx− 1√

ε
P−1Ay|2 = (

√
εP Tx− 1√

ε
P−1Ay)T (

√
εP Tx− 1√

ε
P−1Ay)

= (
√
εxTP − 1√

ε
yTAT (P−1)T )(

√
εP Tx− 1√

ε
P−1Ay)

= εxTPP Tx− xTAy − yTATx+
1

ε
yT (P−1A)T (P−1A)y

= εxTPP Tx− 2xTAy +
1

ε
yT (P−1A)T (P−1A)y,

so (16) follows.

3 Main Results

Theorem 1 For some positive constants α > 0, β > 0, γ > 0, the following
conditions are satisfied for k ∈ N

(A1). There exist symmetric nonnegative definite matrices D1, D2, Hk such that

F T (y)F (y) ≤ yTD1y, G
T (y)G(y) ≤ yTD2y, N

T
k (y)Nk(y) ≤ yTHky;

(A2). The Riccati equation P− 1

2 (PB+BP −αPAATP − 1
α
D1−βPCCTP )P− 1

2 =
Q for some symmetric positive solution P , where Q is symmetric positive matrix;

(A3). λm(Q) > λM(R), where R = P−
1
2 D2P−

1
2

β
;

(A4). Let λ ∈ (0, δ0] satisfy λ− λm(Q) + λM(R)
∫ +∞

0
k(s)eλsds ≤ 0;

(A5). θ < λ, where θ := sup{ lnθk

tk−tk−1
}, θk := max{1, ξk + ζk

∫ +∞

0
k(s)eλsds}, ζk =

( 1
γ
+λM(ET

k PEk))·λM(P− 1

2HkP
− 1

2 ), ξk = λM(P− 1

2 (W T
k PWk+γW

T
k PEkE

T
k PWk)P

− 1

2 ).

Then the zero solution of (3) is globally exponentially stable.

Proof. From (A3), the inequality λ− λm(Q) + λM(R)
∫ +∞

0
k(s)eλsds ≤ 0 has at

least one solution λ > 0. Let y(t) be a solution of (3) through (t, φ), φ ∈ PC and
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v(t) := yT (t)Py(t). From (5), for t 6= tk, we can get

D+v(t) = 2yT (t)P ẏ(t)

= 2yT (t)P (−By(t) + AF (y(t)) + C

∫ t

−∞

k(t− s)G(y(s))ds)

= −2yT (t)PBy(t) + 2yT (t)PAF (y(t)) + 2yT (t)C

∫ t

−∞

k(t− s)G(y(s))ds

By using Lemma 2 and Lemma 3, there are positive constants α and β such that

D+v(t) ≤ −yT (t)(PB +BP )y(t) + αyT (t)PAATPy(t) +
1

α
F T (y(t))F (y(t))

+βyT (t)PCCTPy(t) +
1

β

∫ t

−∞

k(t− s)GT (y(s))G(y(s))ds

≤ −yT (t)P
1

2 (P− 1

2 (PB +BP − αPAATP − 1

α
D1 − βPCCTP )P− 1

2 )P
1

2 y(t)

+

∫ t

−∞

k(t− s)yT (s)P
1

2 (
P− 1

2D2P
− 1

2

β
)P

1

2 y(s)ds

≤ −λm(Q)v(t) + λM(R)

∫ +∞

0

k(s)v(t− s)ds, (t 6= tk). (17)

On the other hand, from (5), (A1), Lemma 2 and Lemma 3, we can get

v(tk) = y(tk)
TPy(tk)

= (Wky(t
−
k ) + Ek

∫ tk

−∞

k(tk − s)Nk(y(s))ds)
TP

×(Wky(t
−
k ) + Ek

∫ tk

−∞

k(tk − s)Nk(y(s))ds)

= yT (t−k )W T
k PWky(t

−
k ) + 2yT (t−k )W T

k PEk

∫ +∞

0

k(s)Nk(y(tk − s))ds

+

∫ +∞

0

k(s)NT
k (y(tk − s))dsET

k PEk

∫ +∞

0

k(s)Nk(y(tk − s))ds

≤ yT (t−k )(W T
k PWk + γW T

k PEkE
T
k PWk)y(t

−
k )

+(
1

γ
+ λM(ET

k PEk))

∫ +∞

0

k(s)NT
k (y(tk − s))ds ·

∫ +∞

0

k(s)Nk(y(tk − s))ds

≤ yT (t−k )P
1

2 (P− 1

2 (W T
k PWk + γW T

k PEkE
T
k PWk)P

− 1

2 )P
1

2 y(t−k )

+(
1

γ
+ λM(ET

k PEk))

∫ +∞

0

k(s)NT
k (y(tk − s))Nk(y(tk − s))ds

≤ yT (t−k )P
1

2 (P− 1

2 (W T
k PWk + γW T

k PEkE
T
k PWk)P

− 1

2 )P
1

2 y(t−k )

+(
1

γ
+ λM(ET

k PEk))

∫ +∞

0

k(s)yT (tk − s)P
1

2 (P− 1

2HkP
− 1

2 )P
1

2 y(tk − s)ds
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≤ λM(P− 1

2 (W T
k PWk + γW T

k PEkE
T
k PWk)P

− 1

2 )v(t−k )

+(
1

γ
+ λM(ET

k PEk)) · λM(P− 1

2HkP
− 1

2 )

∫ +∞

0

k(s)v(tk − s)ds

= ξkv(t
−
k ) + ζk

∫ +∞

0

k(s)v(tk − s)ds. (18)

Employing Lemma 1, from (17) (18) (A3) and (A4) we have

v(t) ≤ θ1 · · · θk−1e
−λ(t−t0)‖v(t0)‖∞

≤ eθ(t1−t0) · · · eθ(tk−1−tk−2)e−λ(t−t0)‖v(t0)‖∞
≤ eθ(t−t0)e−λ(t−t0)‖v(t0)‖∞
= e−(λ−θ)(t−t0)‖v(t0)‖∞, tk−1 ≤ t < tk, k ∈ N,

and so the conclusion holds. The proof is completed.

Remark If Wk = E (unit matrix), Ek = 0 for all k = 1, 2, · · · in the (5), then
the equation (5) becomes a dynamical system without impulses in vector form

ẏ(t) = −By(t) + AF (y(t)) + C

∫ t

−∞

k(t− s)G(y(s))ds, (19)

which contains many popular models such as Hopfield neural networks, cellular neural
networks and recurrent neural networks, etc.. By using of Theorem 1, we can easily
get the following corollary.

Corollary Assume that the conditions (A1), (A2), (A3), (A4) in the theorem 1
are all satisfied. Then the zero solution of (19) is globally exponentially stable with
exponential convergent rate λ.

Theorem 2 Assume that the following conditions are satisfied for k ∈ N

(A′
1). There exist kj, lj , njk, j = 1, · · · , n such that

|fj(x) − fj(y)| ≤ kj|x− y|, |gj(x) − gj(y)| ≤ lj|x− y|,
|njk(x) − njk(y)| ≤ njk|x− y|;

(A′
2). ν < h, where h = min

1≤j≤n
(bj−

∑n

i=1 |aij |kj), ν = ‖CL‖, and L = diag(l1, · · · , ln);

(A′
3). Let λ ∈ (0, δ0] be a solution of λ− h+ ν

∫ +∞

0
k(s)eλsds ≤ 0;

(A′
4). η < λ, where η := sup{ lnηk

tk−tk−1
}, ηk := max{1, ‖Wk‖+‖EkN

′
k‖

∫ +∞

0
k(s)eλsds},

and N ′
k = diag(n1k, · · · , nnk).

Then the zero solution of (3) is globally exponentially stable.

Proof. Since ν < h, the inequality λ − h + ν
∫ +∞

0
k(s)eλsds ≤ 0 has at least

one solution λ > 0. Let y(t) be a solution of (3) through (t, φ), φ ∈ PC and v(t) =
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∑n

i=1 |yi(t)| = ‖y(t)‖. From (A1) we have

D+v(t) =

n
∑

i=1

sgn(yi(t))y
′
i(t)

=

n
∑

i=1

sgn(yi(t))(−biyi(t) +

n
∑

j=1

{aijFj(yj(t)) + cij

∫ t

−∞

k(t− s)Gj(yj(s))ds})

≤ −
n

∑

i=1

bi|yi(t)| +
n

∑

i=1

n
∑

j=1

(|aij|kj|yj(t)| + |cij|lj
∫ +∞

0

k(s)|yj(t− s)|ds)

≤ −
n

∑

j=1

(bj −
n

∑

i=1

|aij |kj)|yj(t)| + ‖CL‖
∫ +∞

0

k(s)v(t− s)ds

≤ −hv(t) + ν

∫ +∞

0

k(s)v(t− s)ds, (t 6= tk). (20)

On the other hand, from (5), we can get

v(tk) = ‖y(tk)‖ ≤ ‖Wk‖v(t−k ) + ‖EkN
′
k‖

∫ +∞

0

k(s)v(tk − s)ds. (21)

From (20) (21) (A′
2) (A′

3) and Lemma 1, we can get

v(t) ≤ e−(λ−η)(t−t0)‖v(t0)‖∞, t ≥ t0.

So the conclusion holds and the proof is completed.

4 Examples

Example 1: Consider the following impulsive dynamical system with distributed
delays:

{

ẏi(t) = −biyi(t) +
∑2

j=1{aijFj(yj(t)) + cij
∫ t

−∞
k(t− s)Gj(yj(s))ds}, t 6= tk,

yi(tk) =
∑2

j=1{wk
ijyj(t

−
k ) + ek

ij

∫ tk
−∞

k(tk − s)Njk(yj(s))ds}, t = tk,

(22)
where b1 = 4, b2 = 3, a11 = a12 = a22 = 1, a21 = −1, c11 = c22 = 1, c21 = 1

2
, c12 =

−1
2
, wk

12 = wk
21 = 0, wk

11 = 0.3e0.01k, wk
22 = 0.2e0.01k, ek

12 = ek
21 = 0, ek

11 = 0.2e0.01k, ek
22 =

0.15e0.01k, Fj(s) = |s+1|−|s−1|
2

, Gj(s) = Njk(s) = s, k(s) = e−s, tk = tk−1+1.66k, k ∈ N.

It is easy to see D1 = D2 = Hk = E. We choose P = E i.e. v(t) = xT (t)x(t)
and α = β = γ = 1. By simple computation, we can get λm(Q) = 7

4
, λM(R) =

1, tk − tk−1 = 1.66k,

ξk = λM(W T
k Wk +W T

k EkE
T
k Wk)

.
= 0.09e0.02k + 0.0036e0.04k,
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ζk = (1 + λM(ET
k Ek)) · λM(Hk)

.
= 1 + 0.04e0.02k,

θk := max{1, ξk + ζk

∫ +∞

0

k(s)eλsds} .
= 1.443 + 0.14772e0.02k + 0.0036e0.04k.

Therefore we have

ln θk

tk − tk−1
≤ 0.30509 < λ =

11 −
√

73

8
.
= 0.30700,

where λ is an unique solution of equation:λ− λm(Q) + λM(R)
∫ +∞

0
k(s)eλsds = 0.

According to Theorem 1, we know the equilibrium point (0, 0)T of (22) is globally
exponentially stable with approximate exponential convergent rate 0.00191.

Example 2: Consider the following 2-dimensional neural network with distributed
delays

ẏi(t) = −biyi(t) +

2
∑

j=1

cij

∫ t

−∞

k(t− s)Gj(yj(s))ds, (i = 1, 2), (23)

where b1 = 2, b2 = 1, c11 = −1, c12 = c21 = 0.3, c22 = 0.5, Gj(s) = tanh(s) =
es−e−s

es+e−s , k(s) = e−s.

It is easy to see D2 = E. We choose P = E; i.e., v(t) = xT (t)x(t). By simple
computation, we know when β ∈ (0, 3.669724771), the matrix 2B−βCCT is positive
matrix; when β ∈ (0.5532290950, 3.06367700), and we get λm(Q) = −0.715β +
3 − 0.025

√

261β2 − 1200β + 1600 > λM(R) = 1
β
. So, by using the Corollary, when

β ∈ (0.5532290950, 3.06367700), the zero solution of (23) is exponential stable.

Moreover, when β = 1.78, by using our results, the maximum exponential conver-
gent rate of (23) is λmax = 0.3859545295. However, if we use the results in paper [1],
the maximum exponential convergent rate of (23) is only λ′max = 0.2878679656.

Example 3: Consider the following 2-dimensional impulsive neural network with
distributed delays:

{

ẏi(t) = −biyi(t) +
∑2

j=1{aijFj(yj(t)) + cij
∫ t

−∞
k(t− s)Gj(yj(s))ds}, t 6= tk,

yi(tk) =
∑2

j=1w
k
ijyj(t

−
k ), t = tk,

(24)
with the initial conditions y1(s) = cos(s), y2(s) = sin(s),−∞ < s ≤ 0, where
b1 = 4, b2 = 6, a11 = a21 = a22 = 1, a12 = −1, c11 = 1, c21 = c22 = 1

2
, c12 =

−1
2
, wk

12 = −0.072e0.2k, wk
21 = 0.092e0.2k, wk

11 = 0.921e0.2k, wk
22 = −0.727e0.2k, Fj(s) =

|s+1|−|s−1|
2

, Gj(s) = s, k(s) = e−s, tk = tk−1 + 1.3k, k ∈ N.

By simple computation, we can get kj = lj = 1, h = 2, ν = 3
2
, ‖EkN

′
k‖ = 0, ‖Wk‖ =

1.013e0.2k, tk − tk−1 = 1.3k,

ηk = max{1, ‖Wk‖ + ‖EkN
′
k‖

∫ +∞

0

k(s)eλsds} = ‖Wk‖ = 1.013e0.2k.
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Therefore we have

ln ηk

tk − tk−1

≤ 0.1641 < λ =
3 −

√
7

2

.
= 0.1771,

where λ is a unique solution of equation:λ− h + ν
∫ +∞

0
k(s)eλsds = 0.

According to Theorem 2, we know the equilibrium point (0, 0)T of (24) is globally
exponentially stable with approximate exponential convergent rate 0.013.

Next, by utilizing a standard Runge-Kutta method, the simulation result of Ex-
ample 3 above is illustrated in Fig.1.

Figure 1: Stability for neural network without impulses or with impulses.

5 Conclusions

In this letter, the impulsive dynamical system with distributed delays is inves-
tigated. For the model (see (3)), by the established impulsive differential-integro
inequality (see Lemma 1), we have obtained some sufficient conditions of global ex-
ponential stability for the equilibrium point. To the best of our knowledge, the results
presented here have been not appeared in the related literature. When model (3) is
a continuous dynamical system (see (19)), we obtained the sufficient conditions en-
suring the global exponential stability of such model. In the example 2, we point out
our result can get the larger exponential convergent rate than the results in paper [1]
can do.
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